當(dāng)前位置:首頁 > 成功案例
導(dǎo)讀目錄1. 突破單結(jié)太陽能電池解析_疊層太陽能電池TSC的發(fā)展性2. AQS-based添加劑延伸步驟及表征設(shè)備3. AQS實(shí)現(xiàn)WBG單結(jié)全無機(jī)PSC長(zhǎng)期穩(wěn)定性提升用于鈣鈦礦/有機(jī)疊層太陽能電池P/O TSC 突破單結(jié)太陽能電池高PCE:18.59%、VOC近1.3V 疊層太陽能電池TSC 10001000小時(shí)的T90壽命隨著能源需求的增長(zhǎng)和對(duì)可再生能源的關(guān)注,太陽能電池技術(shù)的發(fā)展成為了研究的重點(diǎn)。傳統(tǒng)的單結(jié)太陽能電池受制于肖克利-奎瑟極限,為了突破這一限制,香港
前言隨著全球?qū)沙掷m(xù)能源需求的日益增長(zhǎng),提高太陽能電池的效率和穩(wěn)定性成為當(dāng)前科研領(lǐng)域的重要課題。Pb-Sn鈣鈦礦太陽能電池因其潛在的高效率和低成本制造而備受關(guān)注。然而,這些器件的性能往往受到材料結(jié)晶質(zhì)量和界面特性的限制。中科院黃維院士與西北工業(yè)冉晨鑫團(tuán)隊(duì)在Advanced Materials(DOI: 10.1002/adma.202404185)中,提出了一種全新的分子錨定策略,旨在提升Pb-Sn鈣鈦礦太陽能電池的性能。研究團(tuán)隊(duì)開發(fā)了L-丙氨酸甲酯作為錨定添加劑,用以誘導(dǎo)垂直晶體生長(zhǎng),并介紹了
導(dǎo)讀目錄1. 關(guān)于有機(jī)光電探測(cè)器(OPDs)的發(fā)展挑戰(zhàn)2. 如何提升有機(jī)光電探測(cè)器(OPDs)限制性3. Y-QC4F光電二極管型SWIR OPDs優(yōu)異成效 關(guān)于有機(jī)光電探測(cè)器(OPDs)的發(fā)展挑戰(zhàn)在光電科技的世界中,有機(jī)光電探測(cè)器(OPDs)一直在挑戰(zhàn)短波長(zhǎng)紅外(SWIR)范疇的極限。與目前市場(chǎng)主導(dǎo)的鉬鎵砷(InGaAs)無機(jī)光電探測(cè)器相比,OPDs在SWIR光譜的表現(xiàn)依然有所欠缺,這主要?dú)w因于缺乏能有效響應(yīng)超過1.3微米波長(zhǎng)的有機(jī)半導(dǎo)體材料。然而,傳統(tǒng)的有機(jī)半導(dǎo)體在面對(duì)能隙
前言有機(jī)太陽能電池(OSCs)因其輕便、柔性、可大面積制備等優(yōu)勢(shì),近年來備受關(guān)注。為了提升OSCs的效率,研究人員不斷開發(fā)新型有機(jī)光伏受體材料,特別是基于受體-供體-受體(A-D-A)結(jié)構(gòu)的小分子受體(SMAs)。然而,目前高效率的OSCs器件通常依賴于含鹵素溶劑,這不利于其大規(guī)模商業(yè)化應(yīng)用。因此,開發(fā)與無鹵素溶劑兼容的高效有機(jī)光伏材料至關(guān)重要。深圳大學(xué)楊楚羅團(tuán)隊(duì)八月于Advanced Materials (DOI: 10.1002/adma.202407517) 中發(fā)表的研究成果,提出了一種基
有機(jī)太陽能電池(OSCs)因其在柔性和可穿戴光伏設(shè)備制造中的低成本溶液加工方法而備受關(guān)注。特別是全聚合物太陽能電池(all-PSCs),由于其良好的柔性和形態(tài)穩(wěn)定性,在柔性設(shè)備領(lǐng)域顯示出巨大潛力。然而,早期用于all-PSCs的聚合物受體在近紅外區(qū)域的吸收能力較弱,且分子堆積不理想,限制了其進(jìn)一步發(fā)展。為了克服這些挑戰(zhàn),提高功率轉(zhuǎn)換效率(PCE),研究人員提出了聚合小分子受體(PSMA)的概念,利用窄帶隙小分子受體(SMAs)作為關(guān)鍵構(gòu)建模塊。PSMAs不僅具有低帶隙和強(qiáng)吸收的優(yōu)點(diǎn),還具有適合的
有機(jī)太陽能電池(OSCs)的發(fā)展已見成效,采用非富勒烯受體(NFAs)的小分子材料,使其能量轉(zhuǎn)換效率(PCE)超過了19%。然而,有機(jī)材料在吸收光譜上存在局限,尤其是NIR和NUV區(qū)域的吸收不佳。為了提升光吸收能力,研究人員提出了低帶隙NFAs和多組分策略,雖然提高了JSC,但在單一結(jié)OSCs中無法最小化高能量光子的能量損失。串聯(lián)太陽能電池(TSCs)結(jié)合了寬帶隙(WBG)和低帶隙(LBG)半導(dǎo)體,可以擴(kuò)展吸收光譜,減少能量損失,從而提升光伏性能。研究人員探索了2T和4T兩種結(jié)構(gòu),其中2T架構(gòu)因